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Abstract
The topic of memory has long been a motivation and central focus in the area of case-based reasoning
(CBR), influencing how cases are obtained, stored, retrieved, updated, and even forgotten. But memory
is not a topic exclusive to CBR-based AI systems and is, in fact, necessary for AI systems to operate in
many use cases. In this paper, we more generally examine the topic of memory in AI systems, presenting
our Six Levels of AI Memory framework and describing the types of reasoning each level supports. We
use these levels of AI memory to frame discussion of the existing and future memory capabilities of
CBR and large-language models (LLMs), providing insight into how CBR’s history of memory-focused
reasoning can support LLMs in enhancing their memory.
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1. Introduction

Large Language Models (LLMs) have grasped public attention since the release of ChatGPT
in late 2022 and have had transformative impact on AI. Since then, individuals, researchers,
and industry have widely applied LLMs for a growing range of tasks, such as planning [1],
question answering [2], and reasoning [2, 3]. To be able to operate effectively in these contexts,
a range of memory capabilities will be required. While current LLMs have been augmented
with varying memory capabilities, the need for robust memory remains, and its development
has been highlighted as a key challenge [4].

Bach et. al [5] present a broad range of opportunities and challenges for integrations of
CBR and LLMs, including the potential for applying CBR-inspired methods to improving LLM
memory. Of necessity, that paper presented key points at a high level. This paper elaborates on
the themes presented there for integration of episodic memories inspired both by the cognitive
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models underlying CBR and by the memory strategies and algorithms developed in CBR research.
Henceforth, we will refer to these models as “CBR-inspired memory."

We begin the paper by introducing a hierarchy for organizing AI memory capabilities, which
we call the Six Levels of AI Memory. This framework provides a breakdown of the ways
in which AI systems may remember, store, use, and forget information, and is designed to
facilitate discussion on memory capabilities. We then provide a brief introduction to cognitive
science research giving rise to theories of human memory that shaped CBR memory models
and elaborate, refine, and extend the opportunities from [5] using the Levels of AI Memory
framework as well as the techniques developed by the CBR community for handling memory.
Finally, we examine the challenges for implementation of CBR inspired memory and LLMs to
achieve specific levels in the Six Levels of AI Memory framework.

2. Levels of Memory

To our knowledge, no categorization of the spectrum of memory levels on which AI systems
operate has been defined. We propose the Six Levels of AI Memory framework, analogous to
the levels of autonomous driving [6]:

Level 0: No Memory: Some AI systems may reason exclusively on the current set of inputs
and make no attempt to leverage prior information. When the current input 𝑥𝑖 is provided
to the AI system, the output 𝑦𝑖 is only a function of the input: 𝑦𝑖 = 𝑓(𝑥𝑖). As an example,
a static classifier such as a neural network with an unchanging structure or parameters has
no memory; the outputs are only dependent on the current inputs. Regardless of the user or
context, these systems will always produce the same output given the same input (assuming no
non-determinism in their process). These types of AI systems can be thought of as being reactive
because they do not maintain any state information for subsequent reasoning or attempt to
learn. This level of memory requires all relevant information to be fully specified in the current
input—otherwise the AI system will not have sufficient information to reason successfully.

Level 1: Short-Term Working Memory: This level is the first at which an AI system has
some level of memory that is used during its reasoning. Short-term working memory involves
using both the current input and a fixed number of prior inputs when producing output,
providing a limited amount of contextual information that can be used by the AI system. For a
memory of length 𝑛, the output 𝑦𝑖 is a function of the current input 𝑥𝑖 and the 𝑛 prior inputs
𝑥𝑖−1, . . . , 𝑥𝑥−𝑛: 𝑦𝑖 = 𝑓(𝑥𝑖, 𝑥𝑖−1, . . . , 𝑥𝑖−𝑛). This level of memory overcomes the limitation of
having no memory in that not all relevant information needs to be in the current input; relevant
information can also be in the prior inputs. However, because short-term working memory
uses a fixed-length window, there is no guarantee that relevant information will be within that
window. Similarly, there are no guarantees that the short-term memory window only includes
inputs relevant to the current context. For example, an input window of length 5 may have
inputs from multiple users or multiple applications, and only the most recent user or application
may be relevant.

Level 2: Session Memory: This level of memory is similar to short-term working memory
in that it allows an AI system to reason using information from prior inputs but differs in



how many prior inputs are provided. Whereas short-term working memory always uses a
fixed-length window of past inputs, session memory uses a variable-length window that allows
it to better align with the current context. When a session begins at time 𝑗, the input at that
time 𝑥𝑗 serves as the start of the dynamic window and extends to the current input 𝑥𝑖 (𝑖 ≥ 𝑗).
Thus, at the start of a session (when 𝑖 = 𝑗), no prior inputs will be included but the length of
the window will grow as more inputs are received and the distance between 𝑖 and 𝑗 increases:
𝑦𝑖 = 𝑓(𝑥𝑖, 𝑥𝑖−1, . . . , 𝑥𝑗). For example, when a new user begins using an AI system or an AI
system is used for a new task, a new session could be created to account for the contextual
change. This type of memory allows AI systems to better align the inputs they reason with to
their current context by only considering inputs that occurred during the session. Comparing it
to short-term working memory, it avoids the possibility of inputs from multiple contexts being
part of the same window, which could potentially cause issues during reasoning (e.g., the current
user may not want the system to reason using inputs from the previous user). However, session
memory relies on the relevant session inputs occurring in sequence during an uninterrupted
window. If User A uses an AI system and then takes a break while User B uses it, a new session
would be created when User A returns to the system, forgetting all of their previous inputs from
their initial session.

Level 3: Long-Term Memory: The previously described levels of memory make information
available over pre-defined time periods (e.g., fixed windows or sessions) but do not provide
longer-term access to that information later. After the time window or session end, the in-
formation is discarded and no longer available for future reasoning. One option would be to
make the memory windows or sessions arbitrarily long, such that outputs are a function of all
previous inputs: 𝑦𝑖 = 𝑓(𝑥𝑖, . . . , 𝑥0). However, over the lifetime of an AI system the number
of inputs is likely to become very large, making such an approach computationally infeasible.
Additionally, it does not overcome the challenge that not all past inputs are relevant for the
current context. Instead, long-term memory provides the ability to store relevant information
in a persistent form such that it can be retrieved and used later. This idea is central to case-
based reasoning, where the case base serves as a long-term memory that can be added to and
retrieved from as needed. Similarly, retrieval-augmented generation (RAG) (e.g., [7]) leverages
elements of long-term memory in storing information in outside data structures and retrieving
that information to supplement the current inputs (although LLMs do not natively self-store
additional information into their long-term memory during reasoning). Thus, reasoning is
a function of both the current input 𝑥𝑖 (and possibly previous inputs if short-term working
memory or session memory is used) along with information from the long-term memory ℒ
(e.g., a case base or RAG documents): 𝑦𝑖 = 𝑓(𝑥𝑖,ℒ). Additionally, long-term memory could be
further subdivided based on the user (e.g., only retrieving information from a specific user) or
task (e.g., only retrieve information related to someone performing a specific task, sub-task, or
goal). Long-term memory begins to provide AI systems with the lifelong ability to learn and
reason that makes them suitable for applications that undergo regular context shifts or require
longer-term recall of relevant reasoning information.

Level 4: Human-Like Memory: While long-term memory provides the ability to store and
retrieve information over the lifetime of an AI system, the memory structures used are often



coarse and do not mimic the nuanced and dynamic memory exhibited by humans. As an example,
while long-term memory may support storing one or more of a user’s previous sessions, it
may lack relevant contextual information such as why the session was performed (e.g., goals),
what the results of the session were (e.g., success, failure, partial success), key takeaways from
the session (e.g., difficulty performing certain tasks), and other relevant information. Human-
like memory, on the other hand, supports such richer representations, making it easier to
extract relevant insights from memory or supporting transfer of memories to new contexts
(e.g., using the memory of booking a visit with the doctor to book a visit with a science tutor).
Similarly, attaining the human-like memory level includes improving the way in which memories
are represented and structured. This can include aspects such as organizing memories in a
hierarchical representation, clustering related memories together, building graph-like structures
to represent memories and how they relate to each other, and decomposing memories into
sub-units. Aspects of human-like memory have often influenced case-based reasoning research
to improve the storage and retrieval of cases (as discussed in Section 3) but this level of memory
is still lacking in LLMs.

Level 5: Super-Human Memory: Human-like memory helps bring AI systems in line with
the memory capabilities of humans performing the same task but may also suffer from some
of the same shortcomings. For example, human memory is not infinite so some information
is routinely forgotten, similarly to how an AI system may need to forget information due to
storage limitations. In some situations, forgetting is beneficial for both humans and AI systems if
the memories that forgotten are no longer relevant or needed (e.g., forgetting the password to a
computer you no longer own), or replacing many similar specific memories with a generalization
may be useful. However, in other situations valuable information may be inadvertently forgotten
(e.g., forgetting the password to a computer you have not used in several years). Similarly, the
ways in which memories are stored or organized may result in an overgeneralization that keeps
high-level concepts but loses low-level specifics (e.g., remembering how to drive a car but not
how to access the engine of a specific model of car). Going past the capabilities of humans,
super-human memory would support the ability to accurately store and retrieve an unlimited
set of memories over the lifetime of an AI system without making it computationally infeasible.
Super-human memory may also support memory sharing, where multiple AI systems can share
information in a common memory without having to explicitly communicate with each other.
Such memory would provide an interconnected network of AI systems with immediate access to
the shared experiences of all systems within the network. This would be similar to immediately
knowing how to solve a technical issue with a computer if someone in your network had
previously encountered and solved that problem (i.e., without having to explicitly ask them or
search for a solution). Federated memories might provide the capability to access experiences
gathered from different perspectives. While those are three examples of super-human memory
capabilities, the scope of super-human memory is broad and includes anything that provides an
AI system with memory that improves upon human capabilities. Although many aspects of
super-human memory may be infeasible with current AI systems, they provide a general target
for how such systems can surpass human memory and provide functionality that exceeds the
capabilities of a human, or even a group of humans.



LLMs: Current-generation LLMs operate primarily at Levels 1 and 2, with elements of Level 3
(e.g., using RAG) [7]. For example, large commercial models like Google Gemini or ChatGPT
support short-term or session-level memory by maintaining a context of previous queries and
responses to the user. The primary differentiator between LLMs that operate at Level 1 or
Level 2 memory is that LLMs at Level 1 only support using past interactions as contextual
information whereas LLMs at Level 2 allows starting (and stopping) new sessions. By explicitly
starting new sessions, these LLMs are able to reset their memory and start back at a “blank
slate”. However, even commercial LLMs that support very large context windows (e.g., Google
Gemini supporting millions of tokens for input), there is still a limitation on the short-term
and session-level memory available. Even for these advanced commercial LLMs, the stored
interactions are only temporary and are never explicitly moved into a longer-term memory.
Levels 3 and 4 would allow LLMS to support storing/recalling past experiences, improving
dialogues, and learning (outside of just retraining/fine-tuning). Progressing through memory
levels requires implementing long-term storage, complex associations, dynamic memory models,
and enhanced recall/sharing. Higher levels unlock benefits, such as personalization, coherent
responses, and advanced reasoning, leading to AI systems accurately modeling and surpassing
human memory (e.g., Level 5).

3. Dynamic Memory and CBR

One trigger for the study of case-based reasoning was study of human remindings and their
role in understanding and learning: Schank’s Dynamic Memory Theory [8]. In Dynamic
Memory theory, the same structures that guide understanding—Memory Organization Packages,
or MOPs—organize memories. MOPs are hierarchical and memory is reconstructive, with
memories of an episode collected by assembling the components indexed under MOPs for
their constituent parts. Remembering a doctor’s visit, for example, could involve assembling
components for MOPs for check-in, waiting in the waiting room, the doctor’s examination,
and payment. The waiting room MOP can be shared by other contexts, such as a lawyer visit.
Consequently, learning in one context is naturally available in the other—in this way, the
model provides cross-contextual learning. In addition, Dynamic Memory theory hypothesized
the existence of abstract thematic organization points (TOPs) organizing episodes by abstract
features such as configurations of goals (e.g., for Romeo and Juliet, Mutual Goal; Outside
Opposition). Indexing by explanations of failures and by TOPs accounted for a wide range of
cross-contextual remindings. As we discussed in the previous section, many of these features of
dynamic memory are necessary for AI systems, particularly LLMs, to advance to human-like
and super-human memory.

Research on Dynamic Memory theory gave rise to a series of computer models [9] including
some of the first CBR systems. These included models of memory search [10], MOP generation
during understanding [11], failure-driven reminding [12], and case-based reasoning for tasks
such as subjective assessment, planning, and parsing (for an overview see [13]). Much of this
work focused on memory organization, and specifically on developing indexing vocabularies
[14, 15, 16]. As described in Section 4, such methods can form a potential basis for external
case memories to support LLMs by providing episodic knowledge. However, they also involve



1. Providing input knowledge for LLMs

• Query anticipation/completion

• Context-focused RAG

• Long-term personalization

2. Supporting capture and reuse of prior LLM processing

• Supporting response consistency

• Supporting solution accuracy

• Error anticipation/avoidance

• Speedup through reuse and adaptation

3. Supporting persistent dynamic memory for continual updating

4. Supporting cross-context knowledge access (applicable to all previous items)

5. Supporting exchange of memories between LLMs

List 1
Memory opportunities (cf. Bach et al. [5])

.

challenges, which we delineate in Section 5.

4. Opportunities from CBR-Inspired Memory Systems for LLMs

Bach et al. observed that "generation of useful abstractions and larger-scale knowledge struc-
tures can provide the basis for new functionality for LLM users." That work proposes various
functionalities that CBR-based memories could provide for LLMs, which we revise and augment
to form the items of List 1. This list presents 5 types of opportunities, retrieving information to
provide as inputs to support interactions with LLMs, improve LLM accuracy, and enable long-
term personalization; supporting capture and reuse of LLM processing, supporting continual
updating, supporting cross-contextual knowledge access, and supporting exchange of memories
across LLMs. In the remainder of this section, we present each in more detail.

4.1. Providing input knowledge for LLMs

A memory that stores traces of user interactions can be used to anticipate user prompts based
on prior experience, to facilitate interactions through query anticipation and prompt proposal/-
completion. As an example, typical users of a travel system may first ask questions about flight
options to a destination, followed by questions about hotels, and then finally questions about
restaurants and activities. Being able to identify that a user is following a common usage pattern
stored in the system’s memory and proactively providing them information would improve the
user’s experience. Using information from past sessions (i.e., Level 2 memory) or long-term
knowledge allows AI systems to leverage their memory by understanding a user’s particular
context in a meaningful way.

Retrieval-augmented generation (RAG) is an effective method to improve LLM performance,
by prompting the LLM with additional domain knowledge [7, 17, 18]. Often, the provided



knowledge is general factual knowledge about the domain. However, providing well-chosen
cases instead of general knowledge can be advantageous [19, 20]. In addition to simply retrieving
query-relevant cases, the right memory model could retrieve context-relevant cases, organized
by active understanding structures, as in Dynamic Memory theory, for Context-focused RAG.

If retrieval is shaped by a dynamic memory able to learn new knowledge structures from
processing particular types of queries, and to understand the underlying goals of those queries
and how they relate to particular users, the memory will also be able to learn new contexts and
to retrieve accordingly. If memory reflects the agent seeking the information in its organization
scheme, retrievals may be tailored to user needs, for long-term personalization.

4.2. Supporting capture and reuse of prior LLM processing

The availability of episodic memory can support trust, accuracy, and efficiency. One factor
affecting trust in AI systems is consistency (i.e., whether they respond in predictable ways to
new situations). However, the stochastic nature of LLM responses results in varying answers
for a single prompt. A CBR system can be wrapped around the LLM process as an intelligent
component [21] to capture prompts and solutions for reuse, bypassing LLM reasoning from
scratch for similar future problems. Such an approach can support response consistency, replacing
stochastic solution generation with a deterministic process. This is comparable to a group of
students each asking their teacher for details about an upcoming exam. Ideally, the teacher
should provide similar responses to all students and ensure that they are not providing any
erroneous or contradictory information to some students.

When generating solutions from cases, a system can benefit from past feedback, such as
noting cases that have been vetted as correct and trustworthy. Likewise, the level of similarity
required for invoking CBR, and the allowed level of case adaptation, can constrain the reuse
of memories to support solution accuracy from the CBR component, with users notified of
whether the solution is based on existing solutions or generated from scratch. Returning to the
student-teacher example, having cases related to responses which were found to be particularly
beneficial for student comprehension would allow those cases to be reused with students that
have similar educational needs.

An early observation of CBR is that cases are valuable for learning from both successes and
failures (e.g., [22]), and that this enables anticipation and avoidance of failures [23]. Retrieved
past cases that report LLM failures can identify and warn of those failures in the future, and, if
a correct solution was generated in response to the failure in the past, that solution is available
to replace the erroneous one. This is especially important given the number of LLMs that
are available, each with their own strength and, more importantly, weaknesses. Since the
weaknesses of a particular LLM may not be fully understood at its release, a memory of when
the LLM failed and how to correct failures (e.g., "Provide an example to the LLM along with your
question") can improve long-term performance. Similarly, a CBR system could remember which
LLMs are better suited for particular queries and intelligently route queries to an appropriate
LLM.

An early motivation for CBR was speedup learning, which aims to avoid the wasted effort of
re-generating solutions from scratch when a prior solution could be adapted more efficiently.
Solution generation by LLMs is expensive and its cost is a growing concern (e.g., [24]). Replacing



LLM inference with CBR, where possible, could potentially improve both speed and energy
efficiency of inference, especially for tasks in circumscribed domains for which small case bases
suffice; potentially in systems with multiple small cases that can bring expertise to particular
task domains [25]. As an example, a common question such as "What is the capital of France?"
may not require full RAG-based inference using a large commercial model.

4.3. Supporting persistent dynamic memory for continual updating

Because memories in a Dynamic Memory are reconstructed, by using the knowledge structures
used for understanding, changes in those knowledge structures enable the memories to naturally
reflect intervening learning. Likewise, memories are reorganized and re-indexed as the memory
is used. This provides both a persistent memory and the capability for flexible updating. Over
time, stored cases may reflect richer information, and prompts and stored solutions may be
adjusted dynamically. CBR research has developed an extensive set of strategies for maintaining
case bases, such as deleting and updating cases [26]; some of these are discussed in Section 5.

4.4. Supporting cross-context knowledge access

The sharing of knowledge structures across contexts, combined with the indexing of episodes
under those knowledge structures, enables cross-contextual remindings. Likewise, abstract
indexing structures such as TOPs can characterize episodes based on thematic similarities and
retrieve useful cases despite surface differences. For example, CBR-inspired memory has been
applied in educational contexts, using rich abstract indexing structures, to support tasks such
as the retrieval of stories based on deep thematic similarities, even if they might have divergent
surface features [16]. The capability to access knowledge across context increases the potential
pool of useful knowledge to bring to bear for reasoning and learning.

4.5. Supporting exchange of memories between LLMs

Case-based reasoning research includes studies of distributed CBR, including how federations
of CBR systems can exchange memories [27]. Methods have been developed to federate CBR
systems to achieve the benefits of case sharing while minimizing the amount of shared data [28],
for determining when to dispatch retrieval queries to other case bases and which adaptations
are needed based on inter-case-base differences [25], and for reconciling heterogeneous case
representations in multi-case-base systems [29].

5. Challenges in Implementing CBR-Inspired Memory

Having presented our taxonomy of the levels of memory and discussed opportunities for
combining CBR-inspired memories with LLMs, we now consider the challenges of constructing
such systems. For each challenge, we make contact with the levels of memory taxonomy and
provide suggestions for how to overcome the challenges at each level. We begin by discussing
issues with memory maintenance and scalability. Then, we move to discussing challenges with
retrieval and adaptation.



Any design for memory-enabled LLM systems should ensure that the memory requirements
do not exceed the physical limits of the computer. Moreover, in time-varying or non-stationary
environments, it is important to ensure that stale information is unavailable during retrieval.
Both of these requirements may be achieved via forgetting strategies (e.g., [30, 31, 32, 33]). For
short-term memory systems (Level 1), this is achieved via the fixed-size working memory buffer
that steadily marches past experience out of the buffer as new experiences come in. In Level
2-type systems that maintain session memory, forgetting occurs any time a new session is
created. So, to guarantee proper maintenance of the memory system, a new session may be
created whenever the system approaches the memory limit or when the environment dynamics
change. Maintenance becomes a more pressing issue for levels of memory beyond 3. Here,
forgetting may be implemented by case deletion (e.g., [33, 34]) or even by forgetting parts of
cases and maintaining the rest [31]. Generalized or prototype cases may also enable the system
to delete individual cases in preference of storing a single case that represents some average of
the cases to delete, or only representing deviations from standard features [35].

For levels of memory at 3 and above, dealing with scalability is another challenge. At such
levels, the memory will grow over time, potentially for decades. Despite this, it is essential
that all the memory system operations (retrieval, adaptation, and case retention) execute
efficiently. Consequently, the memory system needs an expressive, yet compact, representation
that meaningfully describes cases, and supports long time-horizon operations. The system also
needs to leverage clever indexing techniques to manage the organization of memory contents.
Towards these ends, system designers might rely on storing and maintaining prototype or
generalized cases as well as a hierarchical memory structure that supports efficient retrieval
and retention.

A related but separate challenge to maintenance and scalability issues is relevance filtering. In
memory-enabled LLM systems, past experience is exploited to enhance context and reasoning.
The challenge lies in efficiently identifying and retrieving such useful information from episodic
stores. A similarity metric heuristically guides the search for promising content. In a Level 1 or
2 system, all content can be searched and evaluated against a retrieval query. In higher-level
memory systems, efficient retrieval strategies that make use of the organizational structure, or
indexing scheme, of the memory are needed. Secondly, as far as the similarity metric is concerned,
it must be designed to operate over the representations that are supported in the memory. For
vector-based representations, this might be done using cosine similarity, embeddings, or other
similarity measures that operate at the feature level. For structured content, similarity is
determined via analogy, which is hard, computationally speaking. However, methods from CBR
and analogical reasoning provide potential approaches (e.g., [36, 37]).

Lastly, because Level 4 and 5 require a general store of past experience, it is generally not
possible for system designers to know ahead of time all the different possible ways a CBR-
inspired memory system will exploit past experience to solve a given problem. In this situation,
the traditional problem-solution pair case representation may not be appropriate. To overcome
this, the memory system needs an adaptation technique that can dynamically set problem-
solution pairs via partial matching against user input. Some CBR research has addressed
problems for which problem and solution parts vary dynamically [38]. Another approach that
could satisfy this is Bayesian inference over graph-based case representations. In recent work
[39], cases are represented by Bayesian networks. The adaptation process dynamically maps



observed variables onto the problem part of the case, while variables to infer map onto the
solution part.

6. Conclusions

Assessing the memory capabilities of AI systems in general—and of LLMs in particular—requires
a standardized framework for delineating their capabilities. In response to this need, we have
proposed such a framework, the Six Levels of AI Memory framework, capturing the major
steps from simple memory-free systems, to short-term memory, session memory, long-term
memory, human-like memory, and finally, superhuman memory. We have then presented a
path, informed by this framework, for improving the memory capabilities of LLMs.

To form its vision for LLM memory, this paper revises and extends the opportunities and
challenges related to CBR-inspired memory and LLM integration from the recent paper by
Bach et al. [5]. CBR has a rich history related to the underpinnings of human memory and
has developed methods for retrieving, storing, building and maintaining representation-rich
memories, which form a promising basis for developing LLM memory systems. We encourage
future investigations of memory and LLMs to build on the Six Levels of AI Memory framework
and the opportunities and challenges presented here.
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